Monday 16 January 2012

Hello,

A basic idea of Factor Analysis being used as a Data Reduction Method and a few steps

Suppose we conducted a study in which we measure 100 people's height in inches and centimeters. Thus, we would have two variables that measure height. If in future studies, we want to research, for example, the effect of different nutritional food supplements on height, would we continue to use both measures? Probably not; height is one characteristic of a person, regardless of how it is measured.

Suppose we want to measure people's satisfaction with their lives. We design a satisfaction questionnaire with various items; among other things we ask our subjects how satisfied they are with their hobbies (item 1) and how intensely they are pursuing a hobby (item 2). Most likely, the responses to the two items are highly correlated with each other. Given a high correlation between the two items, we can conclude that they are quite redundant.

Combining Two Variables into a Single Factor: You can summarize the correlation between two variables in a scatterplot. A regression line can then be fitted that represents the "best" summary of the linear relationship between the variables. If we could define a variable that would approximate the regression line in such a plot, then that variable would capture most of the "essence" of the two items. Subjects' single scores on that new factor, represented by the regression line, could then be used in future data analyses to represent that essence of the two items. In a sense we have reduced the two variables to one factor.
Principal Components Analysis: The example described above, combining two correlated variables into one factor, illustrates the basic idea of factor analysis, or of principal components analysis to be precise. If we extend the two-variable example to multiple variables, then the computations become more involved, but the basic principle of expressing two or more variables by a single factor remains the same.
Extracting Principal Components: We do not want to go into the details about the computational aspects of principal components analysis here, which can be found elsewhere. However, basically, the extraction of principal components amounts to a variance maximizing (varimax) rotation of the original variable space.
Generalizing to the Case of Multiple Variables: When there are more than two variables, we can think of them as defining a "space," just as two variables defined a plane. Thus, when we have three variables, we could plot a three- dimensional scatterplot, and, again we could fit a plane through the data.


Multiple orthogonal factors: After we have found the line on which the variance is maximal, there remains some variability around this line. In principal components analysis, after the first factor has been extracted, that is, after the first line has been drawn through the data, we continue and define another line that maximizes the remaining variability, and so on. In this manner, consecutive factors are extracted. Because each consecutive factor is defined to maximize the variability that is not captured by the preceding factor, consecutive factors are independent of each other. Put another way, consecutive factors are uncorrelated or orthogonal to each other.
How many Factors to Extract? So far, we are considering principal components analysis as a data reduction method, that is, as a method for reducing the number of variables. The question then is, how many factors do we want to extract? Note that as we extract consecutive factors, they account for less and less variability. The decision of when to stop extracting factors basically depends on when there is only very little "random" variability left. The nature of this decision is arbitrary; however, various guidelines have been developed.
Reviewing the Results of a Principal Components Analysis. Now looking at some of the standard results from a principal components analysis. To reiterate, we are extracting factors that account for less and less variance. To simplify matters, we usually start with the correlation matrix, where the variances of all variables are equal to 1.0. Therefore, the total variance in that matrix is equal to the number of variables. For example, if we have 10 variables each with a variance of 1 then the total variability that can potentially be extracted is equal to 10 times 1. Suppose that in the satisfaction study introduced earlier we included 10 items to measure different aspects of satisfaction at home and at work. The variance accounted for by successive factors would be summarized as follows:

STATISTICA
FACTOR
ANALYSIS
Eigenvalues (factor.sta)
Extraction: Principal components

Value

Eigenval
% total
Variance
Cumul.
Eigenval
Cumul.
%
1
2
3
4
5
6
7
8
9
10
6.118369
1.800682
.472888
.407996
.317222
.293300
.195808
.170431
.137970
.085334
61.18369
18.00682
4.72888
4.07996
3.17222
2.93300
1.95808
1.70431
1.37970
.85334
6.11837
7.91905
8.39194
8.79993
9.11716
9.41046
9.60626
9.77670
9.91467
10.00000

61.1837
79.1905
83.9194
87.9993
91.1716
94.1046
96.0626
97.7670
99.1467
100.0000


Eigenvalues: In the second column above, we find the variance on the new factors that were successively extracted. In the third column, these values are expressed as a percent of the total variance (in this example, 10). As we can see, factor 1 accounts for 61 percent of the variance, factor 2 for 18 percent, and so on. As expected, the sum of the eigenvalues is equal to the number of variables. The third column contains the cumulative variance extracted. The variances extracted by the factors are called the eigenvalues. This name derives from the computational issues involved.
Eigenvalues and the Number-of-Factors Problem: Now that we have a measure of how much variance each successive factor extracts, we can return to the question of how many factors to retain. As mentioned earlier, by its nature this is an arbitrary decision. However, there are some guidelines that are commonly used, and that, in practice, seem to yield the best results.
The Kaiser criterion: First, we can retain only factors with eigenvalues greater than 1. In essence this is like saying that, unless a factor extracts at least as much as the equivalent of one original variable, we drop it. This criterion was proposed by Kaiser (1960), and is probably the one most widely used. In our example above, using this criterion, we would retain 2 factors (principal components).
The scree test: A graphical method is the scree test first proposed by Cattell (1966). We can plot the eigenvalues shown above in a simple line plot.



Which criterion to use: Both criteria have been studied in detail (Browne, 1968; Cattell & Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Tucker, Koopman & Linn, 1969). Theoretically, you can evaluate those criteria by generating random data based on a particular number of factors. You can then see whether the number of factors is accurately detected by those criteria. Using this general technique, the first method (Kaiser criterion) sometimes retains too many factors, while the second technique (scree test) sometimes retains too few; however, both do quite well under normal conditions, that is, when there are relatively few factors and many cases. In practice, an additional important aspect is the extent to which a solution is interpretable. Therefore, you usually examines several solutions with more or fewer factors, and chooses the one that makes the best "sense." We will discuss this issue in the context of factor rotations below.
Principal Factors Analysis: Before we continue to examine the different aspects of the typical output from a principal components analysis, let us now introduce principal factors analysis. Let us return to our satisfaction questionnaire example to conceive of another "mental model" for factor analysis. We can think of subjects' responses as being dependent on two components. First, there are some underlying common factors, such as the "satisfaction-with-hobbies" factor we looked at before. Each item measures some part of this common aspect of satisfaction. Second, each item also captures a unique aspect of satisfaction that is not addressed by any other item.
Communalities: If this model is correct, then we should not expect that the factors will extract all variance from our items; rather, only that proportion that is due to the common factors and shared by several items. In the language of factor analysis, the proportion of variance of a particular item that is due to common factors (shared with other items) is called communality. Therefore, an additional task facing us when applying this model is to estimate the communalities for each variable, that is, the proportion of variance that each item has in common with other items. The proportion of variance that is unique to each item is then the respective item's total variance minus the communality. A common starting point is to use the squared multiple correlation of an item with all other items as an estimate of the communality (refer to Multiple Regression for details about multiple regression). Some authors have suggested various iterative "post-solution improvements" to the initial multiple regression communality estimate; for example, the so-called MINRES method (minimum residual factor method; Harman & Jones, 1966) will try various modifications to the factor loadings with the goal to minimize the residual (unexplained) sums of squares

No comments:

Post a Comment